nums.models.glms module
-
class
nums.models.glms.ElasticNet(alpha=1.0, l1_ratio=0.5, tol=0.0001, max_iter=100, solver='newton', lr=0.01, random_state=None, fit_intercept=True, normalize=False)[source]
-
class
nums.models.glms.ExponentialRegression(penalty='none', alpha=1.0, l1_ratio=0.5, tol=0.0001, max_iter=100, solver='newton', lr=0.01, random_state=None, fit_intercept=True, normalize=False)[source] Bases:
nums.models.glms.GLM
-
class
nums.models.glms.GLM(penalty='none', alpha=1.0, l1_ratio=0.5, tol=0.0001, max_iter=100, solver='newton', lr=0.01, random_state=None, fit_intercept=True, normalize=False)[source] Bases:
object
-
class
nums.models.glms.Lasso(alpha=1.0, tol=0.0001, max_iter=100, solver='newton', lr=0.01, random_state=None, fit_intercept=True, normalize=False)[source]
-
class
nums.models.glms.LinearRegression(tol=0.0001, max_iter=100, solver='newton', lr=0.01, random_state=None, fit_intercept=True, normalize=False)[source]
-
class
nums.models.glms.LinearRegressionBase(penalty='none', alpha=1.0, l1_ratio=0.5, tol=0.0001, max_iter=100, solver='newton', lr=0.01, random_state=None, fit_intercept=True, normalize=False)[source] Bases:
nums.models.glms.GLM
-
class
nums.models.glms.LogisticRegression(penalty='none', C=1.0, tol=0.0001, max_iter=100, solver='newton', lr=0.01, random_state=None, fit_intercept=True, normalize=False)[source] Bases:
nums.models.glms.GLM
-
class
nums.models.glms.PoissonRegression(penalty='none', alpha=1.0, l1_ratio=0.5, tol=0.0001, max_iter=100, solver='newton', lr=0.01, random_state=None, fit_intercept=True, normalize=False)[source] Bases:
nums.models.glms.GLM
-
nums.models.glms.PoissonRegressor alias of
nums.models.glms.PoissonRegression